An exponential time differencing method for the nonlinear Schrödinger equation

نویسندگان

  • Francisco de la Hoz
  • Fernando Vadillo
چکیده

The spectral methods offer very high spatial resolution for a wide range of nonlinear wave equations, so, for the best computational efficiency, it should be desirable to use also high order methods in time but without very strict restrictions on the step size by reason of numerical stability. In this paper we study the exponential time differencing fourth-order Runge-Kutta (ETDRK4) method; this scheme was derived by Cox and Matthews in [6] and was modified by Kassam and Trefethen in [14]. We compute its amplification factor and plot its stability region, which gives us an explanation of its good behavior for dissipative and dispersive problems. We apply this method to the Schrödinger equation, obtaining excellent results for the cubic equation and the critical exponent case and, later, as an experimental approach to describe the various possible asymptotic behaviors with two space variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity  

Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...

متن کامل

Exponential time differencing Crank-Nicolson method with a quartic spline approximation for nonlinear Schrödinger equations

This paper studies a central difference and quartic spline approximation based exponential time differencing Crank-Nicolson (ETD-CN) method for solving systems of one-dimensional nonlinear Schrödinger equations and twodimensional nonlinear Schrödinger equations. A local extrapolation is employed to achieve a fourth order accuracy in time. The numerical method is proven to be highly efficient an...

متن کامل

Fourth Order Time-stepping for Low Dispersion Korteweg-de Vries and Nonlinear Schrödinger Equations

Abstract. Purely dispersive equations, such as the Korteweg-de Vries and the nonlinear Schrödinger equations in the limit of small dispersion, have solutions to Cauchy problems with smooth initial data which develop a zone of rapid modulated oscillations in the region where the corresponding dispersionless equations have shocks or blowup. Fourth order time-stepping in combination with spectral ...

متن کامل

A Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations

This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...

متن کامل

Higher order exponential time differencing scheme for system of coupled nonlinear Schrödinger equations

The coupled nonlinear Schrödinger equations are highly used in modeling the various phenomena in nonlinear fiber optics, like propagation of pulses. Efficient and reliable numerical schemes are required for analysis of these models and for improvement of the fiber communication system. In this paper, we introduce a new version of the Cox and Matthews third order exponential time differencing Ru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Physics Communications

دوره 179  شماره 

صفحات  -

تاریخ انتشار 2008